Win Fabulous Prizes: Sign Up 4 Free

Flexible Insurance Plans >> ur way!!

Monday, November 19, 2007

Spacecraft.



A spacecraft is a vehicle or device designed for spaceflight. On a sub-orbital spaceflight, a spacecraft enters outer space but then returns to the planetary surface (such as Earth) without making a complete orbit. For an orbital spaceflight, a spacecraft enters a closed orbit around the planetary body. Spacecraft used for human spaceflights carry people on board as crew or passengers. Spacecraft used for robotic space missions operate either autonomously or telerobotically. Robotic spacecraft that leave the vicinity of the planetary body are space probes. Robotic spacecraft that remain in orbit around the planetary body are artificial satellites. Starships, which are built for interstellar travel, are so far a theoretical concept only.

Spacecraft are used for a variety of purposes, including communications, earth observation, meteorology, navigation, planetary exploration, space tourism and space warfare. Spacecraft and space travel are common themes in works of science fiction.

Spacecraft Subsystems.

A spacecraft system comprises various subsystems, dependent upon mission profile. Spacecraft subsystems may include: attitude determination and control (variously called ADAC, ADC or ACS), guidance, navigation, and control (GNC or GN&C), communications (COMS), command and data handling (CDH or C&DH), power (EPS), thermal control (TCS), propulsion, structures, and payload.
Attitude control:
The attitude control subsystem permits proper pointing for the science objective, sun pointing for power to the solar arrays and earth-pointing for communications.

GNC: Guidance refers to the calculation of the commands (usually done by the CDH subsystem) needed to steer the spacecraft where it is desired to be. Navigation means determining a spacecraft's orbital elements or position. Control means adjusting the path of the spacecraft to meet mission requirements. On some missions, GNC and Attitude Control are combined into one subsystem of the spacecraft.

Command and data handling: The CDH subsystem receives commands from the communications subsystem, performs validation and decoding of the commands, and distributes the commands to the appropriate spacecraft subsystems and components. The CDH also receives housekeeping data and science data from the other spacecraft subsystems and components, and packages the data for storage on a solid state recorder or transmission to the ground via the communications subsystem. Other functions of the CDH include maintaining the spacecraft clock and state-of-health monitoring.

Power: Spacecraft need an electrical power generation and distribution subsystem for powering the various spacecraft subsystems. For spacecraft near the Sun, solar panels are frequently used to generate electrical power. Spacecraft designed to operate in more distant locations, for example Jupiter, might employ a Radioisotope Thermoelectric Generator (RTG) to generate electrical power.

Thermal control: Spacecraft must be engineered to withstand transit through the Earth's atmosphere and the space environment. They must operate in a vacuum with temperatures potentially ranging across hundreds of degrees Celsius as well as (if subject to reentry) in the presence of plasmas. The thermal control subsystem makes use of electrical heaters and certain actuators such as louvers to control temperature ranges of equipments within specific ranges.

Propulsion: A propulsion system is needed for spacecraft that perform momentum management maneuvers. Components of a conventional propulsion subsystem include fuel, tankage, valves, pipes, and thrusters. The TCS interfaces with the propulsion subsystem by monitoring the temperature of those components, and by preheating tanks and thrusters in preparation for a spacecraft maneuver.

Structures: Depending upon mission profile, the structural subsystem might need to withstand loads imparted by entry into the atmosphere of another planetary body, and landing on the surface of another planetary body.

Payload: The payloads include scientific instruments (cameras, telescopes, or particle detectors, for example), cargo, or a human crew.

Ground segment: The ground segment, though not technically part of the spacecraft, is vital to the operation of the spacecraft. Typical components of a ground segment in use during normal operations include a mission operations facility where the flight operations team conducts the operations of the spacecraft, a data processing and storage facility, ground stations to radiate signals to and receive signals from the spacecraft, and a voice and data communications network to connect all mission elements.

Launch vehicle
The launch vehicle is used to propel the spacecraft from the Earth's surface, through the atmosphere, and into an orbit, the exact orbit being dependent upon mission configuration. The launch vehicle may be expendable or reusable.